
2022 PhotonIcs & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25{27 April

Silicon Photonics for Neuromorphic Computing and Artiflcial
Intelligence: Applications and Roadmap

B. J. Shastri1; 2; 3, C. Huang2, A. N. Tait2, T. Ferreira de Lima2, and P. R. Prucnal2

1Department of Physics, Engineering Physics & Astronomy
Queen’s University, Kingston, ON K7L 3N6, Canada

2Department of Electrical Engineering, Princeton University
Princeton, NJ 08544, USA

3Vector Institute for Artiflcial Intelligence, Toronto, ON M5G 1M1, Canada

Abstract|



2022 PhotonIcs & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 25{27 April

high parallelism and speed of photonics to bring the same neuromorphic algorithms to applications
requiring multiple channels of multi-gigahertz analog signals, which digital processing struggles to
process in real-time.

By combining the high bandwidth and parallelism of photonic devices with the adaptability and
complexity attained by methods similar to those seen in the brain, photonic neural networks (PNNs)
have the potential to be orders of magnitude faster than state-of-the-art electronic processors while
consuming less energy per computation [5]. The goal of neuromorphic photonic processors is not
to replace conventional computers, but to enable applications that are unreachable at present by
conventional computing technology | those requiring low latency, high bandwidth and low ener-
gies [6, 7]. As shown in Figure 1, examples of applications for ultrafast neural networks include:
1) Enabling fundamental physics breakthroughs: qubit read-out classiflcation, high-energy-particle
collision classiflcation, fusion reactor plasma control; 2) Nonlinear programming: solving nonlinear
optimization problems (robotics, autonomous vehicles, predictive control) and partial difierential
equations; 3) Machine learning acceleration: vector{matrix multiplications, deep learning infer-
ence, ultrafast or online learning; 4) Intelligent signal processing: wideband radio-frequency signal
processing, flbre-optic communication.

2. NEUROMORPHIC PHOTONICS APPROACHES

Neuromorphic photonic [6, 8] approaches can be divided into two main categories (Figure 2): co-
herent (single wavelength) and incoherent (multiwavelength) approaches. Neuromorphic systems
based on reservoir computing [9{11] and Mach-Zehnder interferometers [12, 13] are example of co-
herent approaches. In reservoir computing the predeflned random weights of their hidden layers
cannot be modifled. An alternative approach uses silicon photonics to design fully programmable
neural networks [14, 15], with a so-called broadcast-and-weight protocol [16]. In this architecture,
photonic neurons output optical signals with unique wavelengths. These are multiplexed into a
single waveguide and broadcast to all others, weighted, and photodetected. Each connection be-
tween a pair of neurons is conflgured independently by one microring resonator (MRR) weight,
and the wavelength division multiplexed (WDM) carriers do not mutually interfere when detected
by a single photodetector. Consequently, the physics governing the neural computation is fully
analog and does not require any logic operation or sampling, which would involve serialization and
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here solve that problem by using optoelectronic components (O/E/O), which can be mated with
standard electronics providing reconflgurability. However, neuromorphic photonic circuits are chal-
lenging to scale up because they do not beneflt from digital information, memory units and a serial
processor, and therefore requires a physical unit for each element in a neural network, increasing
size, area and power consumption. Here, integration costs must also be considered, since the ad-
vantages of using analog photonics (high parallelism and high bandwidth) must outweigh the costs
of interfacing it with digital electronics (requiring both O/E and analog/digital conversion).

3. VISION OF A NEUROMORPHIC PROCESSOR

Recently, in our tutorial, Ref. [17], we proposed a vision for a neuromorphic processor. We discussed
how such a neuromorphic chip could potentially be interfaced with a general-purpose computer
(Figure 3), i.e., a CPU, as a coprocessor to target speciflc applications. In general, there are two
levels of complexity associated with co-integrating a general-purpose electronic processor with an
application-speciflc optical processor. Firstly, a CPU processes a series of computation instruc-
tions in an undecided amount of time and is not guaranteed to be completed. Neural networks,
on the other hand, can process data in parallel and in a deterministic amount of time. CPUs
have a concept of a ‘flxed’ instruction set on top of which computer software can be developed.
However, a neuromorphic processor would require a hardware description language (HDL) because
it describes the intended behavior of a hardware in real-time. Secondly, seamlessly interfacing a
photonic integrated circuit with an electronic integrated circuit will take several advances in science
and technology including on-chip lasers and ampliflers, co-integration of CMOS with silicon pho-
tonics, system packaging, high-bandwidth digital-to-analog converters (DAC) and analog-to-digital
converters (ADCs).

Figure 3: Simplifled schematics of a neuromorphic processor. Thanks to integrated laser sources and pho-
todetectors, it can input and output RF signals directly as an option to optically modulated signals. The
waveform generator allows for programming arbitrary stimulus that can be used as part of a machine learning
task. Reproduced from [17].

4. MACHINE LEARNING APPLICATION: FIBER NONLINEARITY IMPAIRMENT
COMPENSATION

The world is witnessing an explosion of internet tra–c. The global internet tra–c has reached 5.3
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on the consistent improvement in CMOS technology [19]. However, the exponential hardware
scaling of ASIC based DSP chips, which is embodied in Moore’s law as other digital electronic
hardware, is fundamentally unsustainable. In parallel, many efiorts are focused on developing new
DSP algorithms to minimize computational complexity, but usually at the expense of reducing
transmission link performances [20].

Instead of embracing such a complexity-performance trade-ofi, an alternative approach is to
explore new hardware platforms that intrinsically ofier high bandwidth, speed, and low power
consumption [6, 21, 22]. Machine learning algorithms, especially neural networks, have been found
efiective in performing many functions in optical networks, including dispersion and nonlinearity
impairments compensation, channel equalization, optical performance monitoring, tra–c predic-
tion, etc [23].

PNNs are well suited for optical communications because the optical signals are processed di-
rectly in the optical domain. This innovation avoids prohibitive energy consumption overhead and
speed reduction in ADCs, especially in data center applications. In parallel, many PNN approaches
are inspired by optical communication systems, making PNNs naturally suitable for processing op-
tical communication signals. For example, we proposed synaptic weights and neuron networking
architecture based on the concept of WDM to enable fan-in and weighted addition [14]. This archi-
tecture can provide a seamless interface between PNNs and WDM systems, which can be applied
as a front-end processor to address inter-wavelength or inter-mode crosstalks problems that DSP
usually lacks the bandwidth or computing power to process (e.g., flber nonlinearity compensation in
WDM systems). Moreover, PNNs combine high-quality waveguides and photonic devices that have
been initially developed for telecommunications. Therefore, PNNs, by default, can support flber
optic communication rates and enable real-time processing. For example, the scalable silicon PNN
proposed by the authors is composed of microring resonator (MRR) banks for synaptic weighting
and O/E/O neurons to produce standard machine learning activation functions. The MRR weight
bank is inspired by WDM fllters, and the O/E/O neurons use typical silicon photodetector and
modulator. Therefore, the optimization of associated devices in PNNs can utilize the fruits of the
entire silicon photonic ecosystem that is driven by telecommunications and data center applications.

Figure 4: (a) Concept of training and implementing photonic neural networks. Inset shows a transfer function
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Figure 5: Micrograph image of a wirebonded photonic neural network chip from Princeton University’s
Lightwave Lab.

capacity and transmission distance. One reason is that the nonlinear interplay between signal,
noises, and optical flbers negates the accuracy of conventional nonlinear compensation algorithms
based on digital backpropagation. Another reason is, the implementation of most nonlinear com-
pensation algorithms in DSP chips demands excessive resources. In contrast, the neural network
approach can learn and approximate the nonlinear perturbation from the abundant training data,
rather than solely relying on the physical flber model (known as stochastic nonlinear Schrodinger
equation). Based on the perturbation methods, the derived neural network algorithm has en-
abled compensating the nonlinear distortion in a 10800 km flber transmission link with 32 Gbaud
signals [24]. In Ref. [15], we developed a PNN platform based on the so-called \neuromorphic"
approach, aiming to map physical models of optoelectronic systems to abstract models of neural
networks (which difiers from the reservoir approaches). By doing so, the PNN system can leverage
existing machine learning algorithms (i.e., backpropagation) and map training results from simu-
lations to heterogeneous photonic hardware. The concept is shown in Figure 2. A proof-of-concept
experiment demonstrates the real-time implementation of a trained neural network model using an
integrated silicon PNN chip [22]. In this work, the authors experimentally demonstrated that the
silicon PNN can produce a similar Q factor improvement compared to the simulated neural network
for nonlinear compensation as shown in Figure 4, but it promises to process the communication
data in real-time and with high bandwidth and low latency.

We also proposed a photonic architecture enabling all-to-all continuous-time recurrent neural
networks (RNN) [15]. Recurrent neural networks can resemble optical flber transmission systems:
the linear neuron-to-neuron connections with internal feedback is analog to linear multiple-input
multiple-output (MIMO) flber channel with dispersive memory. With neuron nonlinearity, RNNs
can be ideally used to approximate all types of linear and nonlinear efiects in a flber transmission
system and compensate for difierent transmission impairments. RNNs, consisting of many feedback
connections, are computationally expensive for digital hardware and require at least milliseconds to
conduct a single inference. Contrarily, in photonic RNN, the feedback operations are simply done
by busing the signals on photonic waveguides, allowing photonic hardware capable of converging
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non-critical. Therefore, traditional computers are not appropriate to implement algorithms depend-
ing on QP for high-speed applications such as signal processing and control systems. In machine
learning, many algorithms, such as SVM, require o†ine training because of the computational
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with incongruous fabrication processes (silicon-on-insulator, CMOS, FinFETs). Silicon photonics
is becoming an ideal platform for integrating these devices while ofiering a combination of foundry
compatibility, device compactness, and cost that enables the creation of scalable photonic systems
on chip.
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