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Abstract: All-optical devices can exploit a suite of nonlinearities in silicon photonics.
We study how microring resonators (MRRs) harness these nonlinearities, with theoretical
model and experimental validation. Free-carrier effects will practically always dominate
Kerr in MRRs.
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1. Introduction

Microring resonators (MRRs) are ubiquitously used in silicon photonic integrated circuits (PICs) in a variety of
devices: modulators, filters, and multiplexers. Recent improvements in fabrication and packaging of silicon PICS
are decreasing coupling- and waveguide loss. This allows the cavity energy inside each resonator to easily reach
levels that trigger optical nonlinearities, such as Kerr effect and two-photon absorption [1]. These effects can be
exploited to engineer devices for all-optical switching [2], thresholding [3] or self-pulsations [4].

All nonlinear optical effects in single waveguides must be taken into account to correctly model the experi-
mental behavior of MRRs built on silicon-on-insulator (SOI) platforms. These include thermo-optic, free-carrier
absorption (FCA), free-carrier dispersion (FCD), two-photon absorption (TPA), and the Kerr effect. Here, we
study their relative strengths in a typical SOI electron beam foundry platform. We match a constructed model with
coupled-mode theory (CMT) to experimental measurements. Our results suggest that all these effects, except for
the thermo-optic, play an important role in altering ultrafast dynamics.
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An all-pass MRR (Fig. 1A) with nonlinearities can be modeled via a CMT method [4]. Its normalized complex
amplitude, a, and normalized carrier density, n, evolve with
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