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1. Introduction

Recently, there has been a surge of interest in the hybridization of photonic and electronic
physics to achieve unique processing capabilities. In this context, there has been significant re-
search in using laser dynamics for both information processing [1–3] and communication [4,5].
Multiplexing in optical networks have also been exploited for similar gains in performance
[6, 7]. A more specific approach involves studying the dynamical property of excitability in
lasers, in which discrete pulses are generated in response to perturbations that exceed a thresh-
old [8–11]. Excitable lasers can process information in a way that resembles spiking in biologi-
cal neuron models. In comparison, however, lasers can exhibit dynamics roughly eight orders of
magnitude faster while being mathematically isomorphic to their biological counterparts [12].

In this manuscript, we simulate a unified, realistic model of a reconfigurable excitable laser
processor, recently proposed in [13]. This model includes a detailed analysis and simulation of a
processing-network node (PNN) as defined in a recent laser networking scheme [14]. Although
parts of the signal pathway have been proposed [13–15], no single model has fully characterized
the signal pathway of a PNN. The device uniquely allows for a large fan-in (�10s to 100s
per unit) without routing or packet switching, and utilizes the ultrafast dynamics of lasers for
high bandwidth (�GHz) processing. We describe the photonic circuit techniques used in our
approach and simulate the device based on experimentally measured parameters in a standard
hybrid III-V/silicon platform [16]. The model allows us to explore critical properties such as
energy consumption, cascadability, and signal bandwidth, and verifies that the PNN can be
fabricated in a realistic device structure.

Spiking neural networks (SNNs)—systems whose communication channels code informa-
tion in events rather than bits—have received significant attention as an alternative to the von





novel information encoding/retrieval through the direct modulation of carrier waveforms.

2. Methods

As illustrated in Fig. 2, the PNN consists of three primary components: reconfigurable spectral
filters, photodetectors, and an excitable laser. Although an inhibitory photodetector is shown
in the schematic diagram, the behavior of the devices are similar, aside from a reversal of the
ground and signal pads. In this analysis, we only examine the excitatory photodetector path-
way for brevity and conciseness. In this scheme, WDM spike signals arrive along a dedicated
waveguide. Weights are applied to each channel via a set of tunable spectral filters.

Inputs from other laser neurons are weighted in the optical domain before reaching the pho-
todetector. The photodetectors produce a photocurrent summing the total optical power. De-
multiplexing many input channels is not necessary because the incoherent sum of all WDM
channels is intentionally computed by the photodetector. The photodetectors receive optical
pulses from a network and produce a current signal which modulates the laser carrier injec-
tion. The excitable laser performs nonlinear discrimination and regenerates the pulsed signal,
analogous to the neural axon hillock. The photodetector front-end proposed here allows for sig-
nificant signal fan-in, while tunable filters allow adjustments of the weights between neurons,
allowing for network reconfigurability.

2.1. Technology Platform

We describe an instantiation of the PNN in the hybrid/III-V platform. This platform includes



Fig. 2. (Top) A depiction of an LIF neuron with a synaptic variable, embedded within a net-
work. (Bottom) A schematic of the proposed laser neuron, complete with filters, balanced
photodetectors, and an excitable laser. In this model, only the excitatory photodetector
pathway is investigated.

and choose dtun = 4:4 (0.66 nm) and Dd = 8:8 (1.3 nm) to achieve tolerable levels of the
extinction ratio, crosstalk and insertion loss [14]. A filter bank will receive a series of pulses
from other lasers, each governed by some output power function Pout[ j](t



j will take the form:

Sin[ j](l ; t) = å
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where Ti j(l ) is the transmission function of ring i for neuron j. Therefore, for a given pho-
todetector spectral responsivity linear system Rl , the current produced by the photodetector is
as follows:
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Based on our assumptions, we can approximate the filter linewidth as significantly larger
than the signal bandwidth.The 40 ps sech2 pulses used in this simulation have transform-limited
bandwidth of Dd = :42 (.063 nm), which is much smaller than the bandwidth of the filters (as
shown in Fig. 4(b)), allowing this approximation to be valid. We assume the photodetector
response is approximately spectrally flat over the C-band [31], and neglect carrier diffusion
limitations to frequency response, which are small compared to the RC limitations included in
this model. This allows us to approximate the responsivity as a constant RlifP(t)g= RPDP(t).
Therefore, we can simplify the photodiode current to the following expression:

ip[ j](t)�å
iRPDTi j(l



Fig. 3. Cross section of the device and full modeling structure for the hybrid silicon/III-V
laser neuron (inhibitory photodetector not included). A series of pulses along n different
wavelength channels l1:::lN are spectrally filtered (i.e. weighted). This results in an exci-
tatory photodetector current response, which propagates into the equivalent circuit depicted
above. The interaction between the photons in the cavity, gain and SA sections are modeled
using rate equations. The resulting output power along wavelength l j becomes the input to
other neurons in a given network.

where F is the linear transfer function of the modeled circuit.
A simulation of multiple input pulses is shown in Fig 5. The laser is pumped with a stable

current source Ip, while the PD is reverse biased with a large voltage (>5 V) to offset the
influence of Ip. Responsivity is assumed to be 0.81A=W [16]. The junction is kept fairly short
(�100s of mm) to avoid transmission line effects.

While the general expression for the complex impedance of the link is more involved, in
practice, the dominant parasitics are the capacitance of the metal wire Cp and the contact resis-
tances RPD, RL. The metal wire capacitance Cp is the easiest to adjust lithographically, either
by changing the height of the oxide layer or the area occupied by the metal bridge to change
the characteristics of the junction.

A common first order model for synaptic dynamics is an integrator with decay [35]:

ds
dt

=� s
t

+ I(t)

where I(t) is the input, t is the time constant and s(t) is the synaptic variable. A neuron will
typically sum signals from multiple synapses si(t) and receive them as inputs. In biological
systems, synaptic variables typically represent neurotransmitter concentrations. In our case, it
represents the RC charged signal. This behavior takes place independently of temporal integra-



Table 1. Hybrid/III-V Laser Parameters

series Param. series Description series Value
Vg gain section volume 1.68�10�11 cm3

Va SA section volume 3.36



Under a desired parameter regime, the internal dynamics can be compressed so that pulse
generation is instantaneous. The behavior simplifies to [12]:

dG(t)
dt

=�gG(G(t)�A)+q
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Fig. 4. Simulation of the response of the processing network node at each step. (a) Input
WDM spike signals coming from the broadcast waveguide with FWHM = 40 ps. Trace
color indicates the carrier wavelength of each pulse. (b) Transmission of spectrum of the
weight bank filter (dotted lines) and input signal power spectra (solid curves). Input sig-
nals are assumed to be at the transform limit for 10 ps pulses. (c) WDM signals after trans-
mission through the filter bank. Pulses on the same wavelength channel acquire the same
weight and are then detected. (d) Electronic current signal, ie(t), that modulates the laser
neuron after traversing the parasitic circuit model in Fig. 3. Pulses are low pass filtered to
FWHM = 56 ps after traveling through device parasitics.

3. Discussion

The model developed in this paper—including the filter bank, electrical junction, and laser
neuron—enables the exploration of both analog signal properties and the effect of physical de-
sign decisions on the behavior of networked PNNs. An example simulation of the complete
model with WDM optical-in and optical-out is shown in Figs. 4 and 5. The front-end weight
bank and photodetector in Figs. 4(a)–4(c) act to generate an electronic representation of the
weighted sum of WDM inputs carrying FWHM=40 ps pulses. This signal that modulates the
laser neuron is shown in Fig. 4(d), after traversing the parasitic circuit model from Fig. 3. While
some pulse spreading is visible (FWHM=56 ps), pulse amplitude and timing information is
clearly maintained when realistic parasitic values are used. Figure 5 illustrates the internal dy-
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computing [41]. At the same time, the temporary conversion to the electrical domain does not
significantly degrade the signal, as this work has simulated. Every device in the primary signal
pathway performs both physical and computational roles, resulting in a robust, ultrafast, and
efficient signal pathway.

Utilization complementary physics along the signal pathway is not unlike this pathway in bi-
ological neurons, in which electrical action potentials are converted to chemical signals called
neurotransmitters upon reaching a synapse (the junction between neurons). Chemical signaling
is a relatively short-range process, but it introduces much more functionality compared to direct
electrical modulation (e.g. both excitation and inhibition, a variety of synaptic timeconstants,




