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There has been recent interest in neuromorphic photonics, a field with the promise to access pivotal and
unexplored regimes of machine intelligence. Progress has been made on isolated neurons and analog inter-
connects; nevertheless, this renewal of interest has yet to produce a demonstration of a silicon photonic
neuron capable of interacting with other like neurons. We report a modulator-class photonic neuron fab-
ricated in a conventional silicon photonic process line. We demonstrate the behaviors of transfer-function
configurability, fan-in, inhibition, time-resolved pulse processing, and, crucially, autaptic cascadability—a
sufficient set of behaviors for a device to act as a neuron participating in a network of like neurons. The
silicon photonic modulator neuron constitutes the final piece needed to make photonic neural networks
fully integrated on currently available silicon photonic platforms.
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I. INTRODUCTION

Renewed interest in neuromorphic photonics has been
heralded by advances in photonic integration technology
[1–3], roadblocks in conventional computing performance
[4,5], the return of neuromorphic electronics [6–10], and
the inundation of machine learning (ML) with neural mod-
els [11]. Neural networks have played some role in ML
(e.g., image and voice recognition, language translation,
pattern detection, and others) since the 1950s [12,13]. They
fell out of favor in the 1990s because they are difficult to
train.

Over the past decade, neural network models have deci-
sively retaken the helm of ML under the alias of “deep
networks” [14]. There are three main reasons: (1) major
algorithmic innovations [15,16], (2) the Internet—an inex-
haustible source of millions of training examples—and
(3) new hardware, specifically graphical processing units
(GPUs) [17]. Central processing units (CPUs) are woe-
fully inefficient at evaluating these models because they
are centralized and instruction based, whereas networks are
distributed and capable of adaptation without a program-
mer. GPUs are more parallel but, today, even they have
been pushed to their limits [18].

Today’s demand for evaluating neural network mod-
els necessitates new hardware. High-tech behemoths and
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research agencies—notably IBM [6], HP [19], Intel
[10], Google [20,21], the Human Brain Project [22],
and DARPA SyNAPSE [23]—have invested heavily in
massively parallel application-specific integrated circuits
(ASICs) for evaluating neural network models more effi-
ciently. Some of these architectures aim to be ML number
crunchers [20,24] and others have enabled novel neurosci-
entific tools [25,26] and previously unforeseen low-power
mobile applications [27].

The primary performance driver for the neuromor-
Moving beyond the nanosecond will require moving

beyond purely electronic physics.
Photonic physics exhibit properties distinct from those

of electronics in terms of multiplexing, energy dissipation,
and cross talk. These properties are favorable for dense,
high-bandwidth interconnects [29] in addition to config-
urable analog signal processing [30–32]. Consequently,
neuromorphic photonic systems could operate 6–8 orders
of magnitude faster than neuromorphic electronics [33]
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with potentially higher energy efficiencies [34]. Neural
interconnects based on field evolution in free space [35,
36], holograms [37,38], and fiber [39] have been demon-
strated but have not been widely adopted, in part because
they cannot be integrated and thereby scaled robustly and
manufactured cheaply. Analog interconnects integrated on
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II. METHODS

A. Device description

1. Theory of operation

The modulator neuron is an optical-to-electrical-to-
optical (O-E-O) device consisting of two photodetectors
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There are three signal generators used in the following
experiments, two analog (a.k.a. synths) and one binary. A
simple slow-wave-form generator (HP 8116A) is used to
acquire the transfer functions (Sec. III A) and the autapse
behavior (Sec. III E). The 8116A offers control of saw-
tooth wave forms that can be used to separate rising and
falling aspects. Burst inputs are generated by a Rohde
and Schwartz SMBV 100A VG (R&S), which is used in
Secs. III A, B, and C. The R&S burst can also be viewed as
trains of return-to-zero (RZ) pulses of varying amplitude.
The binary-pulsed inputs used in Sec. III D are generated
by a pulse-pattern generator (PPG) (Anritsu MP1761B).
The PPG provides the highest instantaneous bandwidth but
the least control over wave forms.

The neuron’s output is coupled off-chip, detected,
and observed in a sampling oscilloscope (Tektronix
DSA8300). Between the output coupler and the oscil-
loscope, there is a signal-to-noise enhancement stage,
not diagrammed, consisting of an erbium-doped fiber
amplifier (EDFA), an optical band-pass filter at λn, a
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is widely used in feedforward-machine-learning networks
today, i.e., in multilayer perceptrons (MLPs) and convolu-
tional neural networks (CNNs) [20]. Positive and negative
ReLUs are obtained by biasing slightly off resonance,
either above or below the pump wavelength. A network
that combines sigmoid and ReLU neurons is well suited to
solving nonlinear optimization problems with constraints,
some of which are reviewed in Ref. [69]. The peaked trans-
fer functions of Figs. 5(e) and 5(f) are known as radial
basis functions (RBFs). When biased on resonance, the
RBF is centered at zero, resulting in a quadratic or rectify-
ing transfer function. The off-centered RBF is obtained by
setting the electrical bias to achieve the highest resonator Q
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is central to the idea of network-based processing, so it is
particularly important to demonstrate this feature directly





ALEXANDER N. TAIT et al. PHYS. REV. APPLIED 11, 064043 (2019)



SILICON PHOTONIC MODULATOR NEURON PHYS. REV. APPLIED 11, 064043 (2019)

feedback signal to influence the same neuron. In other
words, the experiment also verifies the presence of a fan-in
mechanism.

There are several works that have successfully
approached cascadability by avoiding all-optoelectronic
signal pathways and instead using an O-E-O chain con-
sisting of a photodetector connected to a laser [48,81,82]
or modulator [53,71]. Wavelength constraints and phase
sensitivity vanish because this information is lost in the
electronic domain. In addition, the E-O conversion step
can offer strong nonlinearity, as employed here, and the
electronic domain itself offers efficient mechanisms for
nonlinearity and amplification. In Ref. [83], an O-E-O
neuron based on cryogenic silicon LEDs, superconduct-
ing detectors, and superconducting amplifiers [84] was
proposed. Its physical cascadability was demonstrated by
the E-O-E LED-detector link shown in Ref. [85], and its
gain cascadability has been addressed in more recent sim-
ulation works [81,82]. A potential downside of O-E-O
is a vulnerability to electrical parasitics; however, these
parasitics can remain small regardless of the network
scale because O-E-O occurs entirely within a neuron, not
between neurons.

When light combines, it interferes, posing a funda-
mental challenge to fan-in [75]. Optical fan-in results in
either phase dependence, when coherent, or N -fold loss,
when incoherent (e.g., 3 dB at N = 2). In some all-optical
devices where the in-out wavelengths can be the same
(cascadable), these wavelengths also must be the same,
meaning they cannot have more than one input [44,79].
Fan-in with coherent signals can be achieved by exerting
complete control of the optical phase in the interconnect
[41] but then signal-dependent phase changes in a neuron
profoundly affect the behavior of the subsequent intercon-
nect, precluding any cascadability. In Ref. [41], neuron
calculations were implemented at low speed in a CPU; a
neuron based on saturable absorption was contemplated,
but it was not discussed how this element would regenerate
a consistent optical phase.

Fan-in has also been achieved using inputs that are
coherent but mutually incoherent, such as different spatial
modes [86,87], different polarizations, or different wave-
lengths [66,88,89]. These signals do not interfere and,
since they are individually coherent, can be multiplexed
and routed and/or weighted independently by tunable res-
onators [58,90]. The total power is sensed by a photode-
tector (O-E), making this fan-in approach compatible with
the O-E-O approach to cascadability. Multiwavelength-
weighted addition was combined with O-E-O laser neurons
in Ref. [48,50], wherein cascadability was also considered
but not directly demonstrated. A downside of relying on
multiple wavelengths is the need for a different laser source
for each channel. The size of a single all-to-all subnetwork
is capped by the available spectrum and the ability to dis-
tinguish adjacent channels, found in Ref. [91] to be less

than 950 if using the resonators of Ref. [92]; however,
multiples of these subnetworks could be interfaced on a
single chip [55].

B. Nonspiking photonic neurons

The great majority of the work on photonic neurons
has focused on lasers that implement spiking models
similar to biological neurons [42–50], reviewed in Ref.
[51]. To claim a nonspiking modulator as a photonic
neuron r
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There is no fundamental reason why photonics must
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is met when the neuron’s differential optical-to-optical
gain, g, exceeds unity.

1. Theory

The gain g can be derived from the device properties. It
is defined as follows:

g = dPout

dPin
(A1)

= dPout

dTmod

dTmod

dV
dV

dPin
, (A2)

where Tmod is modulator transmission, and V is the junction
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which crosses zero when

Ppump|J=0 = 2Vπ

πRpdRb
. (A16)

Thus, the expression for the pump power where the autapse
loses monostability corresponds exactly with that where
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