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frequency dependent microwave electronics that exhibit poor reconfigurability and tunability
across wideband RF spectrum [17].

Lately, a photonic architecture was proposed for networking and computation on wavelength-
divisionmultiplexing (WDM) signals using standard photonic integrated circuit (PIC) components
[18]. This architecture enables a parallel matrix-vector multiplication operation called weighted
addition, where an array of microrings (MRRs) performs channel-wise weighting (i.e., spectral
filtering) on individual WDM signals while a balanced photo-detector (BPD) outputs the sum
of weighted signals on all channels [19]. The MRRs carry at least two advantages: a) they are
compact passive devices with small footprint (�100 �m2) but holding high operational bandwidth
(>10 GHz), which enables unparalleled information density if instantiated into a dense weight
bank; b) they have wide tunability (over THz bandwidth) achieved by thermal tuning [20], which
equips them with the capability of performing frequency independent processing on arbitrary RF
signals. Therefore, MRRs have been adopted as the key reconfigurable elements in directed-logic
circuits [21], waveform generation [22], reservoir computing [23], and neuromorphic photonic
architectures [24,25].

In this paper, we present the first demonstration of photonic ICA using an on-chip MRR weight
bank to identify the underlying sources that form the basis of the observed data. Source separation
is a critical extension to our prior work on photonic principal component analysis (PCA) that
only decomposes the data to uncorrelated components [26]. We follow the methodology of
multivariate photonics assuming the waveform information of received mixtures may not be
readily available in realistic field scenarios [13,27], and demonstrate that such information
is unnecessary for ICA task but requires sophisticated front-end ADCs and additional data
storage. Instead, we propose a novel photonic ICA algorithm that is able to extract independent
components (ICs) solely based on the higher-order statistics of a single reduced-dimensional
weighted addition output. We deploy a prototype implementation consisting of an RF subsystem
that can dynamically reconfigure the mixing process of two independent sources, and a photonic
subsystem that accomplishes record-high accuracy and precision on MRR weight control. Our
proof-of-concept experiment of two-channel photonic ICA achieves performance whose accuracy
and repeatability are close to that of conventional software-based ICA method (i.e., FastICA
[28]) under different channel separability and near-far conditions. In addition, our numerical
simulation further studies how the Gaussian noise affects the performance of photonic ICA
procedure, and identifies the operating regimes where our approach holds its fidelity. Overall, the
proposed photonic ICA scheme paves the way for future research on integrated photonic systems
that could enable advanced BSS pipelines for more complicated information mixing process.

2. Theory

In this section, we provide a succinct exposition of the basic ICA theory. Our photonic ICA
scheme follows the same two-step procedure as most ICA algorithms: a preliminary whitening
and the actual ICA estimation [29].

2.1. Definition

Consider we have source matrix S where each row represents an independent time-series signal
si„t”„i = 1, : : : , n”. These signals are mixed and result in the observed mixtures X = AS with
the mixing coefficients collectively placed in the mixing matrix A. ICA aims to figure out the
corresponding inverse matrix of A, called the demixing matrix A�1, such that we can retrieve the
independent sources by multiplying it with the received mixtures S̄ = A�1X = A�1AS
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straightforward solutions from PCA: V = UΣ�1�2UT, where U has principal component (PC)
vectors as its columns while diagonal matrix Σ has PC variances as its diagonal entries. Since



Research Article Vol. 28, No. 2 / 20 January 2020 / Optics Express 1830

Fig. 1. (a) Schematic of the experimental setup for performing photonic ICA using an on-
chip MRR weight bank. DFB: distributed feedback laser, MZM: Mach-Zehnder modulator,
ATT: RF attenuator, AWG: arbitrary wave generator, MUX: WDM multiplexer, SM: source
meter, BPD: balanced photo-detector, Oscope: sampling oscilloscope. The synchronization
(SYNC) switch toggles the Oscope triggering state between a repeating pattern from AWG
and a free-running clock at 200 kHz. (b) Micrograph of the fabricated MRR weight bank.
MRRs are coupled with two bus waveguides that input the WDM signals at the IN port,
and output the weighted WDM signals at the THRU and DROP ports. Metal traces are
deposited to deliver the tuning current to the MRR weight bank to thermally tune the optical
transmission of MRRs to configure their weights. (c) Two-channel weight evaluation results
in the same format of [26,33]. Black grid crossings are the target weights. Red lines represent
the deviation between the target weights and the mean of measured weights over 3 repetitions.
Blue ellipses represent the standard deviation of measured weights over 3 repetitions. (d)
Example of IC sources generated by two AWGs; top: square wave with kurtosis of 2, and
bottom: sinusoidal wave with kurtosis of 1.5.

We list here some basic characterizations on the two MRRs used in this work, with more
details described in [26] as we use the same chip for both photonic PCA and ICA. The two
MRRs have radii of 10.921 �m and 10.937 �m, respectively. Their bare resonance peaks are
at 1547.73 nm and 1549.24 nm. For both MRRs, the free spectral range (FSR) is 8.62 nm and
finesse F is 30.79. The coupling gap between the bus waveguides and ring waveguide is 200
nm, and the Q factor is approximately 5500. To enable feedback control on the MRR weight
bank through in-ring photoconductive heaters [33,35], an N-doped section of 10 �m width is
patterned to follow MRRs, outside of which heavy N++ doping is used to make ohmic contacts.
Phosphorous dopant concentrations are N: 5 � 1017cm�3 and N++: 5 � 1020cm�3 as in [36]. The
thermal tuning efficiency of MRRs is measured to be 0.15 nm/mW. We perform MRR weight
bank calibration using the feedback control procedure [33], and achieve 5.7 bits of accuracy
(1.9% error, red lines) and 6.9 bits of precision (0.84% error, blue ellipses) as shown in Fig. 1(c).
Such accomplishment improves upon the latest weight accuracy/precision record (5.2 bits of
accuracy and 6.3 bits of precision) set by our recent photonic PCA work [26].
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We employ two AWGs as the independent sources in our two-channel photonic ICA experiment.
One AWG generates square wave (10 MHz) whose kurtosis is 2. The other AWG generates
sinusoidal wave (20 MHz) whose kurtosis is 1.5. Examples of IC sources are shown in Fig. 1(d),
which will be used as the ground-truth in later performance evaluation phase (with some temporal
shift for alignment purpose). These two signals are mixed by a dedicated mixer consisting of
four tunable RF attenuators (ATTs). As shown in Fig. 1(a), these four ATTs are inter-connected
in such a way that a) ATT1 and ATT3 receive the source signal from AWG1, while ATT2 and
ATT4 receive the source signal from AWG2; and that b) the outputs from ATT1 and ATT2 are
combined as the input to MZM1, while the outputs from ATT3 and ATT4 are combined as the
input to MZM2. As a result, we have an effective mixing matrix

A =

266664
a1 a2
a3 a4

377775 (2)

where each mixing coefficient ai„i = 1, 2, 3, 4” represents the attenuation of corresponding ATT.
In our prototype implementation, the attenuation of each ATT is in the range of 0–12 dB, so ai is
in the range of [0.25, 1].

We also use a synchronization (SYNC) switch to swap between two triggering conditions for
the Oscope [26]. The motivation is that the input mixtures and weighted addition output are
generally not synchronized with the Oscope in field (i.e., real life) scenarios. The only way to
obtain an accurate digital waveform is to take samples in a real-time order at a real-time rate
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Fig. 2. Flowchart of the complete photonic ICA procedure exploiting the interaction between
the photonic hardware (MRR weight bank plus BPD) and software (photonic PCA/ICA
algorithms). First, the photonic hardware produces the weighted addition output y of the
input mixtures X. Next, the photonic PCA algorithm updates the weight vectors w1, : : : ,wn
(set at the MRR weight bank) to be the target PC vectors by maximizing the variance of
y (when switch is on 1). Finally, the photonic ICA algorithm takes the whitening matrix
V computed from photonic PCA results, and updates the weight vectors in the whitened
subspace Vw1, : : : ,Vwn to be the target IC vectors by maximizing the kurtosis of y (when
switch is on 2). Both photonic PCA and ICA algorithms require multiple iterations for
convergence. Detailed code implementations of photonic PCA can be found in [26], while
code implementations of photonic ICA can be found in Appendix A of this manuscript.

the input to the subsequent ICA procedure. Instead, we introduce V as an input argument to the
photonic ICA algorithm, so as to directly process the input mixtures rather than having to sample,
store, and replay VX. This is consistent with our efforts of performing photonic ICA without
redundant waveform information, not to mention VX expands the size of V by T�2 times here
where T is the number of samples taken at super-Nyquist rate.

4.1. ICA algorithm

We describe ICA algorithm as Algorithm 1 in Appendix A, which proceeds by first initializing
multiple weight vectors w1, ..,wn. However, the actual weight vectors applied at the MRR
weight bank now become Vw1, ..,Vwn, which will equivalently transform our ICA procedure
to the whitened subspace of the input mixtures. More importantly, these weight vectors are
constrained to have unit norm because a) the weight vector magnitude is not supposed to affect
the kurtosis measurement of the weighted addition output, and b) we are only differed from the
actual ICs by an orthogonal transformation after whitening (i.e., only the weight vector direction
matters). Therefore, weight normalization is imposed throughout the algorithm execution (where
“normalized" is used).

Our ICA pursuit algorithm borrows inspirations from the well-known Nelder-Mead method
[37], aiming to converge all the weight vectors to the target IC vector by updating the weight vector
associated with the smallest weighted addition output kurtosis at each iteration. Please refer to
Algorithm 1 for the detailed code implementations on four types of update operations available:
reflection, expansion, contraction, and shrinkage, which contribute to the final convergence
collectively. The algorithm proceeds until reaching the termination condition, which is controlled
by a convergence tolerance gauging the proximity of weight vectors. The algorithm can extract
ICs sequentially by enforcing the Gram-Schimit process (i.e., deflationary orthogonalization)
given the fact that IC vectors are orthogonal against each another (see Line 40 of Algorithm 1).
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4.2. Ill-conditioning

The difficulty of ICA problem largely depends on the mixing condition where so-called ill-
conditioning can increase the chance of non-separable ICs. In this work, we consider the
following two basic forms of ill-conditioning:
a) Low channel separability: the transmission paths for ICs are close a1�a3 � a2�a4 (e.g.,

when the sources/receivers are close to each other), so that the received mixtures x1 = a1s1 + a2s2,
x2 = a3s3 + a4s4 are similar (could be differed approximately by a scaling factor). We quantify
the channel separability using the condition number of the mixing matrix A [38]

�„A” = j jAj j � j jA�1 j j (3)

where j j � j j stands for the maximum absolute column sum. The channels are most separable
when �„A”min = 1 (e.g., if a1�a3 = a4�a2 = 1), and least separable when �„A”max = 1 (e.g., if
a1�a3 = a2�a4).
b) Near-far problem: the ratio of received power levels of ICs is high (e.g., when the desired

signal is far away while an undesired interferer is nearby). Suppose s1 is the signal of interest,
and s2 is the signal of interference. Then, we can fix the received power level of s2 while varying
the received power level of s1 by considering the following simple but illustrative mixing matrix

A =

266664
� 1

0 1

377775 (4)

where � controls the intensity ratio between two ICs in mixture x1 = �s1 + s2. If both ICs have
equal power enter the mixer, then 20 � log10„�” quantifies their signal-to-interference ratio (SIR)
within mixture x1.

5. Experimental results

In this section, we present the empirical results obtained from the two-channel photonic ICA
experiment, demonstrating the feasibility of the proposed algorithm and the robustness under
ill-conditioning cases above.

5.1. Channel separability case

We first present the experimental results of two-channel photonic ICA under various channel
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Table 1. ICA Performance Under Channel Separability Conditions

Mixing
Matrix (A)

Condition
Number (�)

SNR
(dB)

1st IC 2nd IC

FastICA PhotonicICA FastICA PhotonicICA

RMSE � SD (%) RMSE � SD (%) RMSE � SD (%) RMSE � SD (%)"
1 0
0 1

#
1 22.70 8.04 � 0.06 8.72 � 0.23 7.80 � 0.08 7.97 � 0.13"

0.8 0.4
0.4 0.9

#
3 21.03 14.38 � 0.09 14.65 � 1.46 15.93 � 0.10 17.88 � 1.17"

0.8 0.5
0.6 0.9

#
5 21.88 21.04 � 0.11 22.63 � 1.51 22.45 � 0.24 24.02 � 0.99"

0.8 0.6
0.5 0.7

#
7 21.22 26.46 � 0.15 28.03 � 2.32 28.52 � 0.16 29.07 � 2.11"

0.7 0.5
0.7 0.8

#
10 21.38 30.61 � 0.17 34.57 � 2.36 32.60 � 0.39 35.89 � 2.07"

0.7 0.8
0.4 0.6

#
21 22.19 36.43 � 0.24 40.78 � 3.27 38.13 � 0.81 39.58 � 3.16"

0.8 0.7
0.5 0.4

#
65 22.14 44.71 � 0.39 47.38 � 3.66 46.88 � 1.29 50.76 � 3.91"

0.8 0.7
0.6 0.5

#
105 22.12 54.60 � 0.64 58.58 � 4.14 58.07 � 1.81 61.35 � 4.05

recovered by FastICA are plotted as black curves in parallel to demonstrate such difficulty results
from the worsening of channel separability rather than the algorithm itself.

Table 1 summarizes quantitative photonic ICA performance under various channel separability
conditions. For each � value, we run the algorithm 6 times (all with newly-initialized random
weight vectors) to study the robustness of the proposed approach. We are interested in a) the
average root-mean-squared error (RMSE) between measured and ground-truth ICs among all 6
runs to quantify accuracy, and b) the standard deviation (SD) of measured ICs among all 6 runs
to quantify repeatability. All values are obtained when both the measured and ground-truth ICs
are temporally aligned and normalized to unit power (the scale of ICs does not matter in ICA
problem). We also report the results of FastICA algorithm in the table.
While the accuracy of both FastICA and photonic ICA degrades with the increase of �, their

performance difference is limited throughout the � values considered here. For the best case of
� = 1, photonic ICA achieves almost the same performance as FastICA, both claiming about
8% RMSE. For the worst case of � = 105, both their RMSEs are over 50% with photonic ICA
having about 4% more error than FastICA. The low accuracy of ICs at large � stems directly
from the inherent difficulty of decomposing two almost the same linear combinations into two
different components. This difficulty holds even if the demixer has the full access to the mixing
matrix, and the lack of knowledge on the mixing matrix in ICA settings only makes it worse.

The repeatability of both FastICA and photonic ICA worsens with respect to the increase of �
as well. However, the SDs of FastICA are mostly small (less than 1% for IC1, less than 2% for
IC2), due to the comparatively invariant input mixtures sampled under super-Nyquist rate. In
contrast, the SDs of photonic ICA express less stability. From the best case of � = 1 to the worst
case of � = 105, the SD increases by about 4% for both ICs. We do not attribute this uncertainty
to our statistics-based photonic ICA approach itself as [13] has demonstrated the histogram of
weighted addition output are identical regardless of whether it is sampled under super-Nyquist
rate or sub-Nyquist rate. Instead, the errors originate from our prototype photonic subsystem,
particularly the instability of MRR weight bank that oversees the drifting of weights over time
(we will have more discussions later about the reasons behind this phenomenon).
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Fig. 3. Experimental waveforms of the received mixtures (left column) and corresponding
ICs (right column) associated with 4 typical condition numbers of the mixing matrix: (a)
� = 1, (b) � = 5, (c) � = 10, (d) � = 21. The degradation of channel separability conditions
(from top to bottom) makes it more difficult for FastICA (black curves) and PhotonicICA
(red curves) to retrieve correct ICs.
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5.2. Near-far case

We next present the experimental results of two-channel photonic ICA under various near-
far conditions. Table 2 lists the effective mixing matrix (A) configured by the mixer in the
experimental setup, with � ranging from +1.5 to -0.25. Here, we pick the square wave as signal of
interest s1 (i.e., far source), a.693 -11.95 Td
[(Reu20(uare)u20siTJ
-167.693 vide)-22ei407-3e7.6ignaluaree as signal of
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Fig. 4. Experimental waveforms of the received mixtures (left column) and corresponding
ICs (right column) associated with 4 typical power ratios of the received power levels of ICs:
(a) SIR = 0 dB, (b) SIR = �4.44 dB, (c) SIR = �7.96 dB, (d) SIR = �12.04 dB. Here, the
square wave is the signal of interest (i.e., far source), while the sinusoidal wave is the signal
of interference (i.e., near source). The decrease of the SIR (from top to bottom) makes it
more difficult for FastICA (black curves, IC1) and PhotonicICA (red curves, IC1) to retrieve
square waves. The recovery of sinusoidal wave (IC2) is largely successful thanks to the pure
copy of it on the second mixture channel (RX2).
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Fig. 5. Numerical investigations of the photonic ICA performance considering the channel
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Algorithm 1: ICA algorithm
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