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Fig. 1. Three different approaches to analog electronic and optical computing that are used as case studies in this work. (a) Resistive crossbar arrays perform
computing in-memory by applying inputs as voltages to rows of the array, and storing weights in flash, memristors, or phase change memory as the conductance
between two points [2], [3], [4], [29], [30], [31], [32], [33], [34], [35]. Ohm’s law yields a sum of products of these input voltages and weight conductances to
produce a current that is proportional to the matrix-vector multiplication. (b) Homodyne photoelectric multiplication integrates charge at a coherent detector and
accumulates MACs over time steps t [23]. (c) Broadcast and weight uses modulators and wavelength division multiplexing to compute a matrix-vector multiplication
in a single clock cycle [36], [37], [38], [39], [40], [41], [42], [43], [44].

multipliers for deep learning do not dynamically vary precision
to account for the precision sensitivity of different layers. At
most, they allow for the amount of precision to be statically
determined at design time for each neural network [1], [23],
[24], or utilize mixed precision by using a digital processor for
precision-sensitive operations, such as backpropagation or the
first and last layer [3], [25], [26], [27], [28].

In this work, we propose extending analog computing archi-
tectures to support dynamic precision that can be selected by a
programmer or compiler, analogous to bit precision in digital
hardware. We observe that it is possible to trade off various
performance metrics, such as energy efficiency, throughput, or
area, to improve the precision of the analog computing engine.
By repeating the same operation multiple times and averaging
the results (as demonstrated by multi-memristive synapses [24]),
precision can be improved at the cost of expending more energy.
In Section IV, we discuss how redundant coding (repeating
the same operation) in space or time can be applied to both
analog electronic and optical computing architectures to enable
dynamic precision.

A key challenge for deploying neural networks with dynamic
precision is determining the optimal precision of different layers
of the neural network given a hardware performance target. In
Section V, we tackle this by solving an optimization problem.
We focus specifically on the tradeoff between the energy per
multiply-accumulate (MAC) of redundant coding and the result-
ing precision. We define a constrained optimization problem to
maximize the original objective of the neural network subject to
a constraint on total energy consumed, where the energy/MAC
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B. Low Precision Neural Networks

Neural networks are able to perform accurate inference at
low bit precision in digital hardware. Empirical research has
demonstrated that neural network accuracy degrades minimally
when quantizing to 4 to 8-bit fixed point integer representations,
despite the networks being trained using 32-bit floating point
numbers [11], [12], [13].

A common method for quantizing floating point values to
low precision is affine quantization [11]. In affine quantization,
floating point inputs x(l) (or weights) in the range [x

(l)
min,x

(l)
max]

are mapped to fixed point integers of B bits from 0 to 2B − 1
by scaling, translating, and rounding the inputs. Mathematically,
this is

x(l)
q = round

(
x(l)

Δ(l)

)
+ z(l)

Δ(l) =
x

(l)
max − x

(l)
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2B

z(l) = round

(
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(l)
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Δ(l)

)
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The average precision required by commonly deployed neural
networks can be lowered by using mixed precision. Different
layers of neural networks are tolerant to different degrees of pre-
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Fig. 3. Dynamic precision with redundant coding; resistive crossbar arrays are used as an illustrative example. Changes to the architecture are shown in red. We
use K to denote the number of times an operation is repeated, where in (a) operations are repeated for K clock cycles, in (b) the same inputs and weights are
repeated, and in (c) only certain rows of W are repeated.

IV. DYNAMIC PRECISION WITH REDUNDANT CODING

We propose extending analog computing architectures to
support dynamic precision through a general method called
redundant coding. Redundant coding entails performing the
same computation multiple times, either in different spatial
channels of the analog matrix-vector multiplier, or over multiple
clock cycles, and averaging the result. This reduces the impact
of noise on the computation at the expense of other perfor-
mance metrics, such as energy/MAC, throughput, or compute
density. Redundant coding has previously been demonstrated as
a method for improving the precision of analog computation by
using multiple memristors to encode the same weight [24]. This
work generalizes redundant coding as a technique applicable
to all analog electronic and optical computing architectures, and
proposes designing architectures that can programmatically vary
the amount of redundancy, as opposed to statically improving
the precision with a fixed amount of redundancy.

We first demonstrate how redundant coding can be used to
vary precision at the granularity of a matrix multiplication. To
enable time averaging, receiver circuitry may add an accumu-
lator, and the compiler can instruct the hardware to accumulate
the same computation for K clock cycles and average the result
before requantizing. To enable spatial averaging, K devices
may be used to encode the same weights and inputs in a single
dot product. For example, in resistive crossbar arrays, multiple
resistive memory elements in a column can be used to encode
the same weight, and the same input voltage can be broadcasted
to multiple rows. The broadcasting of weights and inputs to mul-
tiple devices can be determined at compile time. The application
of redundant coding to a resisitve crossbar array via time and
spatial averaging are shown in Figs. 3(a) and 3(b). WithK times
redundant coding, both of these approaches effectively compute

KWx =
[
W W . . . W

]
⎡
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x

x
...

x

⎤
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Dynamic precision at the finer granularity of each row of
the weight matrix requires modifying spatial averaging to use
a varying number of dot product engines to repeat different
computations. Then, the architecture will need to average over
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traffic. These figures are primarily meant as a demonstration
that dynamic precision can be used to prevent optical matrix
multiplication energy expenditure from being the system bottle-
neck. To more accurately capture the total energy consumption,
the framework can be extended to incorporate ADC energy as a
cost that scales linearly with redundant coding, but that does not
affect noise for the layer, allowing more appropriate tradeoffs to
be made. Other costs such as memory access and data movement
cost can be similarly modeled.

This work enables dynamic precision through a relatively
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